
SK80GB063

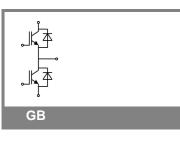
SEMITOP[®] 3

IGBT Module

SK80GB063

Preliminary Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
 Low tail current with low temperature dependence
- Integrated PTC temperature sensor

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifi				
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		600	V
I _C	T _j = 125 °C	T _s = 25 °C	81	Α
		T _s = 80 °C	57	Α
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		200	Α
V _{GES}			± 20	V
t _{psc}	V_{CC} = 300 V; $V_{GE} \leq$ 20 V; VCES < 600 V	T _j = 125 °C	10	μs
Inverse D	iode			
I _F	T _j = 150 °C	T _s = 25 °C	79	Α
		T _s = 80 °C	53	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		150	Α
I _{FSM}	t_p = 10 ms; half sine wave	T _j = 150 °C	720	Α
Module				
I _{t(RMS)}				Α
T _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =		25 $^\circ\text{C},$ unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 1,5 mA		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,3	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			300	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1		V
		T _j = 125 °C		1,1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11		mΩ
		T _j = 125°C		9		mΩ
V _{CE(sat)} I _{Cnom} = 100 A,	I _{Cnom} = 100 A, V _{GE} = 15 V			2,1	2,5	V
		T _j = 125°C _{chiplev.}		2	2,3	V
C _{ies}				4,3		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz				nF
C _{res}				0,4		nF
Q _G	V _{GE} = 0 20 V			310		nC
t _{d(on)}				50		ns
t _r	R_{Gon} = 10 Ω	V _{CC} = 300V		40		ns
E _{on}	D (0.5	I _C = 100A		4		mJ
t _{d(off)}	R _{Goff} = 10 Ω	$T_{j} = 125 \ ^{\circ}C$		300 35		ns
t _f E _{off}		V _{GE} =±15V		3		ns mJ
R _{th(j-s)}	per IGBT	<u> </u>		•	0,6	K/W

SK80GB063

SEMITOP[®] 3

IGBT Module

SK80GB063

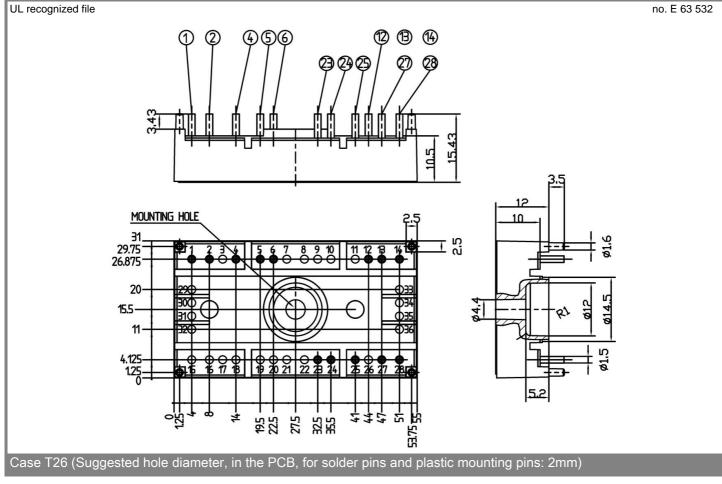
Preliminary Data

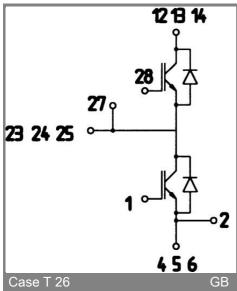
Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capabilityLow tail current with low
- temperature dependenceIntegrated PTC temperature sensor

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characte			min	£1.00	mov	
•	Conditions		min.	typ.	max.	Units
Inverse D	Diode					
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,4		V
		T_j = 125 °C _{chiplev.}		1,3		V
V _{F0}		T _j = 125 °C		0,85	0,9	V
r _F		T _j = 125 °C		6,5	11	mΩ
I _{RRM}	I _F = 60 A	T _i = 125 °C		90		Α
Q _{rr}	di/dt = -3000 A/µs	ſ		7		μC
E _{rr}	V _{CC} = 300V			1,2		mJ
R _{th(j-s)D}	per diode				0,9	K/W
M _s	to heat sink M1		2,25		2,5	Nm
w				30		g


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK80GB063

